SOUTHEAST OFFSHORE STORAGE RESOURCE ASSESSMENT (SOSRA) PROJECT NUMBER: DE-FE0026086

Patricia Berry | Southern States Energy Board Nino Ripepi | Virginia Tech James Knapp | University of South Carolina Jack Pashin | Oklahoma State University

This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory. Cost share and research support are provided by the Project Partners and an Advisory Committee.

> 2nd International Workshop on Offshore Geological CO₂ Storage Beaumont, TX June20, 2017

SOSRA PROJECT TIMELINE

Note: Task 1.0, Project Management and Planning, extends throughout the entire program period.

LOCATION – SOSRA

EGOM STUDY AREA AND SUBREGIONS

DCSB DeSoto Canyon Salt Basin

MGA Middle Ground Arch

- TE Tampa Embayment
- SA Sarasota Arch
- SFB South Florida Basin

DCSB DESTIN DOME

DEPTH CONVERTED STRUCTURAL CROSS SECTIONS, DESOTO CANYON SALT BASIN

WEST FLORIDA SHELF-ESCARPMENT

Roberts and Erickson (2009)

PROSPECTIVE EGOM SINKS

SOUTH AND MID-ATLANTIC PLANNING AREAS

Total of six exploration wells, on Georgia/Florida shelf
Major depocenters in Carolina Trough and Blake Plateau Basin

PROSPECTIVE MESOZOIC SECTION

Reservoir	Positive Indicators	Cautionary Indicators
Properties		
Depth	>800 m, <2500 m	<800 m, >2500 m
Reservoir thickness	>50 m	<20 m
Porosity	>20%	<10%
Permeability	>500 mD	<200 mD
Salinity	>100 gl-1	<30 gl-1
Stratigraphy	Uniform	Complex lateral variation
		and complex connectivity of
		reservoir facies
Capacity	Estimated effective	Estimated effective capacity
	capacity much larger	similar to total amount of
	than total amount of	CO2 to be injected
	CO2 to be injected	
Caprock Properties		
Lateral continuity	Stratigraphically	Lateral variations, medium
	uniform, small or no	to large faults
	faults	
Thickness	>100 m	<20 m

Chadwick et al (2008)

Scholle (1979)

DATA COVERAGE

Over 1,000 lines and 34 wells (only 5 offshore) were selected for the study of the Mid-Atlantic Region.

Areal Coverage Method:

- Line/grid Spacing: Regional, Semi-Regional, Exploration scale
- Location of offshore wells outside the study area. Presence of 5 exploration wells at the North of the region.

Results:

Unlike the sparse distribution of well data, the seismic data collected on the Mid-Atlantic margin is of sufficient density to perform the interpretation task.

0 meters

6000 meters

QUALITY ANALYSIS

Over 1,000 lines and 34 wells (only 5 offshore) were selected for the study of the Mid-Atlantic Region.

Quality Assessment Method:

- Resolution: frequency analysis, data stacked or migrated
- Survey Design: source volume and cable length
- Benefit of reprocessing: identify lines of poor quality and potentially reprocess if needed

Results:

The quality varies from fair to poor and is better for more recent data. Offshore wells were QC'd to improve their quality.

